Cross-reactive immune responses as primary drivers of malaria chronicity.
نویسندگان
چکیده
The within-host dynamics of an infection with the malaria parasite Plasmodium falciparum are the result of a complex interplay between the host immune system and parasite. Continual variation of the P. falciparum erythrocyte membrane protein (PfEMP1) antigens displayed on the surface of infected red blood cells enables the parasite to evade the immune system and prolong infection. Despite the importance of antigenic variation in generating the dynamics of infection, our understanding of the mechanisms by which antigenic variation generates long-term chronic infections is still limited. We developed a model to examine the role of cross-reactivity in generating infection dynamics that are comparable to those of experimental infections. The hybrid computational model we developed is attuned to the biology of malaria by mixing discrete replication events, which mimics the synchrony of parasite replication and invasion, with continuous interaction with the immune system. Using simulations, we evaluated the dynamics of a single malaria infection over time. We then examined three major mechanisms by which the dynamics of a malaria infection can be structured: cross-reactivity of the immune response to PfEMP1, differences in parasite clearance rates, and heterogeneity in the rate at which antigens switch. The results of our simulations demonstrate that cross-reactive immune responses play a primary role in generating the dynamics observed in experimentally untreated infections and in lengthening the period of infection. Importantly, we also find that it is the primary response to the initially expressed PfEMP1, or small subset thereof, that structures the cascading cross-immune dynamics and allows for elongation of the infection.
منابع مشابه
How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens?
Pathogens such as trypanosomes and malaria use antigenic variation to evade immune responses and prolong the duration of infections. As pathogens typically express more than one antigen, even relatively rare conserved antigens might be expected to trigger cross-reactive immune responses capable of clearing the infection. We use simple mathematical models that explicitly consider the dynamic int...
متن کاملA Model to Study the Impact of Polymorphism Driven Liver-Stage Immune Evasion by Malaria Parasites, to Help Design Effective Cross-Reactive Vaccines
Malaria parasites engage a multitude of strategies to evade the immune system of the host, including the generation of polymorphic T cell epitope sequences, termed altered peptide ligands (APLs). Herein we use an animal model to study how single amino acid changes in the sequence of the circumsporozoite protein (CSP), a major target antigen of pre-erythrocytic malaria vaccines, can lead to a re...
متن کاملImmune response to a malaria infection: properties of a mathematical model.
We establish some properties of a within host mathematical model of malaria proposed by Recker et al. [M. Recker et al., Transient cross-reactive immune responses can orchestrate antigenic variation in malaria, Lett. Nature 429 (2004), pp. 555-558; M. Recker and S. Gupta, Conflicting immune responses can prolong the length of infection in Plasmodium falciparum malaria, Bull. Math. Biol. 68 (200...
متن کاملLow doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice.
Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be pol...
متن کاملMalaria immunoepidemiology in low transmission: correlation of infecting genotype and immune response to domains of Plasmodium falciparum merozoite surface protein 3.
Malaria caused by Plasmodium falciparum is a major cause of global infant mortality, and no effective vaccine currently exists. Multiple potential vaccine targets have been identified, and immunoepidemiology studies have played a major part in assessing those candidates. When such studies are carried out in high-transmission settings, individuals are often superinfected with complex mixtures of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 82 1 شماره
صفحات -
تاریخ انتشار 2014